
B&K Precision 8500 DC Load Python Library

Table of Contents
Introduction 2

Prerequisites 2
Why a Library is Useful 3
Using the Library from Python 6

Conventions 6
Return values 6
TimeNow() 6
TurnLoadOn() 6
TurnLoadOff() 6
Remote or local control 6

SetRemoteControl()
SetLocalControl()

Maximums 7
SetMaxCurrent(current)
GetMaxCurrent(sp)
SetMaxVoltage(voltage)
GetMaxVoltage()
SetMaxPower(power)
GetMaxPower()

Modes 7
SetMode(mode)
GetMode()

Set mode parameters 7
SetCCCurrent(current_in_A)
GetCCCurrent()
SetCVVoltage(voltage_in_V)
GetCVVoltage()
SetCWPower(power_in_W)
GetCWPower()
SetCRResistance(resistance_in_ohms)
GetCRResistance()

Transient operations 8
SetTransient(mode, A, A_time_s, B, B_time_s,
operation="continuous")
GetTransient(mode)

Battery testing 8
SetBatteryTestVoltage(min_voltage_in_V)

GetBatteryTestVoltage()
Load On Timer 8

SetLoadOnTimer(time_in_s)
GetLoadOnTimer()
SetLoadOnTimerState(enabled=0)
GetLoadOnTimerState()

SetCommunicationAddress(address=0) 8
Local control 8

EnableLocalControl()
DisableLocalControl()

Remote Sense 9
SetRemoteSense(enabled=0)
GetRemoteSense()

Trigger 9
SetTriggerSource(source="immediate")
GetTriggerSource()
TriggerLoad()

Save/recall Settings 9
SaveSettings(register=0)
RecallSettings(register=0)

Functions 9
SetFunction(function="fixed")
GetFunction()

GetInputValues() 9
GetProductInformation() 9

Using the COM Server 10
Check software installation 10
Connect the DC load 10
Register the COM server 10
Use python to access the COM server 11
Use Visual Basic to access the COM server 11

Python References 13
Appendices 14

Appendix 1: Getting and Installing Python 14
Appendix 2: Getting and Installing pyserial 14
Appendix 3: Getting and Installing pywin32 14

B&K DC Loads Python Library 15 January, 2009 Page 1 of 17

Introduction
We provide a python library, dcload.py, that can provide programming access to a B&K DC load.
The library is only supported for use on Windows computers.

There are two ways you can use this library:

1. You can use it to access a DC load from your own python programs. A DCLoad object is
provided whose interface allows access to various features of the load. You may be able to
use this method of access on non-Windows computers, but this is not supported by B&K.

2. You can use the dcload.py file to provide a COM server that provides access to the load.
Using COM allows you to access the load using programming languages other than python,
such as Visual Basic or Visual C++. COM is only available on Windows platforms.

NOTE: In this document, COM refers either to Component Object Model (a Microsoft programming
technology) or the communications port on a PC (usually, COM1, COM2, etc.). The usage should
be clear from the context.

Prerequisites
To use this library, you must have python and the pyserial library installed on your computer. If
you wish to use the COM server, you must also have the pywin32 library installed. Please see the
appendices for how to get and install these tools.

B&K DC Loads Python Library 15 January, 2009 Page 2 of 17

Why a Library is Useful
The native programming interface to the DC loads is fairly low-level. It involves sending 26 byte
commands and receiving 26 byte responses from the instrument. We'll demonstrate this interface in
this section. First, it will demonstrate that your computer can talk to the instrument. Secondly, you'll
likely see the need for a "higher-level" interface.

The following material assumes you're at a Windows command line.

Use your favorite editor (if you don't have one, you can use notepad.exe) to create a file called
test.txt with the following single line:
import serial

Save the file, then type python test.txt at the command line. There should be no output and a
command prompt should then be printed. If you see the message
ImportError: No module named serial

then the pyserial package wasn't installed correctly.

This demonstrates that you can create a python script and run it. There is no need for the file's
name to have any special suffix.

Now we're ready to talk to the DC load. We'll assume you have the IT-E131 or IT-E132 interface
installed between the computer and the DC load and have the driver installed if you are using the
USB device. Make sure the DC load is powered on. Refer to the DC load instruction manual to set
the baud rate of the DC load to the value you wish to use.

We will create a single command to the DC load that puts it into remote mode. This task illustrates
many of the things that need to be done to talk to the instrument.

Create the following script and call it serial.txt (cut and paste is the fastest way to create it):
Set DC load to remote mode.

import serial
length_packet = 26 # Number of bytes in a packet

def DumpCommand(bytes):
 assert(len(bytes) == length_packet)
 header = " "*3
 print header,
 for i in xrange(length_packet):
 if i % 10 == 0 and i != 0:
 print
 print header,
 if i % 5 == 0:
 print " ",
 s = "%02x" % ord(bytes[i])
 if s == "00":
 s = chr(250)*2
 print s,
 print

def CalculateChecksum(cmd):
 assert((len(cmd) == length_packet - 1) or (len(cmd) == length_packet))
 checksum = 0
 for i in xrange(length_packet - 1):

B&K DC Loads Python Library 15 January, 2009 Page 3 of 17

 checksum += ord(cmd[i])
 checksum %= 256
 return checksum

def main():
 port = 3 # COM4 for my computer
 baudrate = 38400
 sp = serial.Serial(port, baudrate) # Open a serial connection
 # Construct a set to remote command
 cmd = chr(0xaa) + chr(0x00) + chr(0x20) # First three bytes
 cmd += chr(0x01) + chr(0x00)*(length_packet - 1 - 4)
 cmd += chr(CalculateChecksum(cmd))
 assert(len(cmd) == length_packet)

 # Send command to DC load
 sp.write(cmd)
 print "Set to remote command:"
 DumpCommand(cmd)

 # Get response from DC load
 response = sp.read(length_packet)
 assert(len(response) == length_packet)
 print "Response:"
 DumpCommand(response)

main()

The last line in the script calls the function main(). The first three lines of the main() function set
up a serial port to talk to. This serial object is created for us by the pyserial module we installed.
Note that in pyserial, the first COM port on your computer is numbered 0; thus, if you're using
COM1 on your PC, you'll set the port variable to 0.

The next five lines construct the string that we will send to the DC load. The chr() function creates
a single character that has the ASCII value of the argument. The + symbols allows strings to be
concatenated. The expression chr(0)*a_number creates a string of ASCII 0x00 characters whose
length is a_number. The last character is the checksum of the previous 25 characters, calculated for
us by the CalculateChecksum() function.

We use the write method of the sp object (the connection to the serial port) to send the command
to the instrument. The DumpCommand() function prints the contents of the command to the screen in
a hex format.

When a command has been sent to the instrument, you must always request the return data, which
will always be another 26 bytes. This is also dumped to the screen.

Here are the results printed when this script is run:
Set to remote command:
 aa ·· 20 01 ·· ·· ·· ·· ·· ··
 ·· ·· ·· ·· ·· ·· ·· ·· ·· ··
 ·· ·· ·· ·· ·· cb
Response:
 aa ·· 12 80 ·· ·· ·· ·· ·· ··
 ·· ·· ·· ·· ·· ·· ·· ·· ·· ··
 ·· ·· ·· ·· ·· 3c

The · characters represent the bytes with a value of 0x00. This makes it easier to see the nonzero
bytes in the string.

B&K DC Loads Python Library 15 January, 2009 Page 4 of 17

The first byte of a command is always 0xaa and the second byte is the address of the DC load. The
address should be set to 0. The third byte identifies the command "set to remote" and the fourth
byte is a 1, which means enable remote mode. If the fourth byte was 0, this command would set the
DC load to local mode.

The third byte of the response string is 0x12, which means this is a packet that gives the status of
the last command sent. The fourth byte is 0x80, which means the command completed
successfully.

On the DC load, you should see the Rmt annunciator turned on immediately after running the script.
You will also see the Link annunciator light up while communications are going on, then blink out
after a few seconds.

Press Shift + Local to return the DC load to local mode.

We've learned two key things about the DC load:

1. Commands are always sent as 26 byte packets.

2. For any command you send to the DC load, you must also request the return of a 26 byte
packet. This returned packet will either be a status packet or contain the information which
you requested -- for example, the power level currently set.

Get in the habit of looking at the LEDs on the IT-E131 or IT-E132 interfaces. Every command you
send to the DC load should result in both the RX and TX LEDs blinking once. If this doesn't happen,
something is wrong with the code, interface, or instrument.

If you peruse the DC load manual's programming section, you can see it will be tedious to construct
all the commands as we did above. It would be a time saver to have a library do the low-level byte
and bit manipulations for us. This was the rationale for developing the dcload.py module.

B&K DC Loads Python Library 15 January, 2009 Page 5 of 17

Using the Library from Python
The pyserial library abstracts the serial port. Thus, you may be able to use the dcload.py module
for python programming on other platforms, such as Linux or Mac. However, B&K only supports use
of the dcload.py module on Windows 2000 and later platforms.

At any time while using the library, you can execute
load.debug = 1

(where load is a DCLoad object defined in the module dcload.py) and you will turn on debugging
printout. This causes the raw commands sent to and received from the DC load to be printed out.
Set it back to 0 to turn debugging off.

Conventions
Many of the methods are getters and setters. This is object-terminology for methods that get or set
state variables of a class (in this case the instrument, which is "hidden" inside the class). Usually,
one value, such as a current, will be returned to you when you call the method. However, you
should read the docstring of the method to understand what it returns. The docstring is a string that
immediately follows the method name and is used to document the method.

All units used in the DCLoad methods are in SI; this means amperes, volts, watts, or ohms. You
send values in these units and receive information back in those units. Internally, the DC load
actually uses different units, but the library insulates you from that fact.

Return values
All of the library methods return strings. Methods that are used to set the state of the load will return
the empty string if they are successful. Otherwise, the string contains an error message explaining
what went wrong. Methods that return instrument settings will always return a nonempty string. It is
up to you to parse or interpret that string correctly.

For robust code, you would want to check the return value of every such command. This can get
tedious, so you may instead want to change the library to issue exceptions in these cases instead.
This is beyond the scope of this note, so please refer to a python reference for how to do this.

Example
You can run the client.py script to see an example of use of the dcload.py module. From the
command line, the command would be
python client.py obj p br

where p is the COM port number of the DC load and br is the baud rate the load is set to. This will
produce output similar to (your numbers will differ)
Time from DC Load = Fri May 16 13:28:31 2008
Set to remote control
Set max current to 3 A
Set CC current to 0.2 A
Settings:
 Mode = cc
 Max voltage = 10.0
 Max current = 3.0
 Max power = 15.0
 CC current = 0.2
 CV voltage = 10.0

B&K DC Loads Python Library 15 January, 2009 Page 6 of 17

 CW power = 0.0
 CR resistance = 4000.0
 Load on timer time = 60000
 Load on timer state = disabled
 Trigger source = immediate
 Function = fixed
 Input values:
 6.392 V
 0.0 A
 0.0 W
 0x14
 0x0
 Product info:
 8512

 1.78

TimeNow()
Returns a string with the current date and time. This is useful for data logging. Example:
Sun Dec 16 10:07:35 2007

The facilities in python's time module allow you to customize this string.

TurnLoadOn()
Turns the load on.

TurnLoadOff()
Turns the load off.

Remote or local control
SetRemoteControl()

Turns on the Rmt annunciator and puts the instrument into remote control. This means the only DC
load keys that are functional are the up and down arrow keys and the Shift + Local key press.

SetLocalControl()
Returns control back to the front panel.

Maximums
These methods set the maximum values allowed to be set on the instrument. You can perform the
same functions using the :SYSTEM SET menu from the DC load's front panel.

SetMaxCurrent(current)
Set maximum current in amperes. If you set the maximum current via the menu and front panel to a
value larger than the instrument's capabilities, it will be set to the instrument's largest value. But if
you try to do the same thing with the SetMaxCurrent() method, you'll get an error. Thus, you'll
want to either use the GetMaxCurrent() method to verify that you set the correct value or examine
the return value of the SetMaxCurrent() method.

GetMaxCurrent(sp)
Returns the currently-set maximum current in amperes.

B&K DC Loads Python Library 15 January, 2009 Page 7 of 17

SetMaxVoltage(voltage)
Analogous to SetMaxCurrent().

GetMaxVoltage()
Returns the currently-set maximum voltage in volts.

SetMaxPower(power)
Analogous to SetMaxCurrent().

GetMaxPower()
Returns the currently-set maximum power in watts.

Modes
SetMode(mode)

Sets the instrument to the specified mode, which is constant current, constant voltage, constant
power, or constant resistance. mode must be one of the strings "cc", "cv", "cw", or "cr"; case is not
important.

GetMode()
Returns one of the strings "cc", "cv", "cw", or "cr" indicating the currently-set mode.

Set mode parameters
SetCCCurrent(current_in_A)
GetCCCurrent()

Returns CC mode's current in A.

SetCVVoltage(voltage_in_V)
GetCVVoltage()

Returns CV mode's voltage in V.

SetCWPower(power_in_W)
GetCWPower()

Returns CW mode's power in W.

SetCRResistance(resistance_in_ohms)
GetCRResistance()

Returns CR mode's resistance in .

Transient operations
SetTransient(mode, A, A_time_s, B, B_time_s, operation="continuous")

mode must be one of "cc", "cv", "cw", or "cr". operation must be "continuous", "pulse", or "toggled".
Please see the instruction manual for the meanings of the other terms and how the triggering works.

GetTransient(mode)
Returns a string containing the mode, A, A_time_s, B, B_time_s, and operation. The variable
names are the same as those used in the SetTransient() method.

B&K DC Loads Python Library 15 January, 2009 Page 8 of 17

Battery testing
SetBatteryTestVoltage(min_voltage_in_V)
GetBatteryTestVoltage()

Returns the minimum voltage in volts for the battery test.

Load On Timer
SetLoadOnTimer(time_in_s)
GetLoadOnTimer()

Returns the load on timer time in seconds.

SetLoadOnTimerState(enabled=0)
Set enabled to 1 to turn the load on timer state on. Set it to 0 to disable load on timer.

GetLoadOnTimerState()
Returns 0 (disabled) or 1 (enabled).

SetCommunicationAddress(address=0)
The address must be an integer between 0x00 and 0xFE. Note: this address is currently
unsupported and should always be set to 0.

Local control
EnableLocalControl()

Local control means the keys on the front panel work.

DisableLocalControl()
Local control disabled means only the up/down arrow keys work and the Shift + Local key (which
returns the instrument to local control).

Remote Sense
SetRemoteSense(enabled=0)

Set enabled to 1 to turn on remote sensing. Set it to 0 to turn remote sensing off.

GetRemoteSense()
Returns 1 if remote sensing is enabled, 0 if not.

Trigger
SetTriggerSource(source="immediate")

The three choices for source are "immediate", "external", and "bus". "immediate" means a trigger
occurs when the front panel Shift + Trigger is pressed. "external" means a trigger occurs when
a TTL high signal longer than 5 ms reaches the trigger terminals on the back panel. "bus" means a
software trigger is received (see the TriggerLoad() method).

GetTriggerSource()
Returns "immediate", "external", or "bus".

TriggerLoad()
Trigger the DC load by a software signal.

B&K DC Loads Python Library 15 January, 2009 Page 9 of 17

Save/recall Settings
SaveSettings(register=0)

Save the instrument's settings in the indicated register. register must be between 1 and 25
inclusive.

RecallSettings(register=0)
Recall the instrument's settings in the indicated register. register must be between 1 and 25
inclusive.

Functions
SetFunction(function="fixed")

function must be "fixed", "short", "transient", or "battery". Note "list" is not included, although it would
not be much extra software work to add it.

GetFunction()
Returns "fixed", "short", "transient", or "battery".

GetInputValues()
Returns a string containing the voltage, current, power, op state, and demand state. The first three
values are what are currently being displayed on the instrument's display panel. The last two are
one byte and two byte integers (as hex strings), respectively, that contain coded information about
the instrument's state. Please see the user manual for details.

GetProductInformation()
Returns a string containing the model number, serial number, and firmware version.

B&K DC Loads Python Library 15 January, 2009 Page 10 of 17

Using the COM Server
Using the COM server will only work on Windows computers. You'll need to install python, pyserial,
and pywin32; please refer to the appendices for instructions.

Here's a summary of the things we'll do in this section:

1. Connect a DC load to the computer.

2. Register the COM server.

3. Run a python script to access the DC load via the COM server.

4. Use Visual Basic to access the DC load via the COM server

Connect the DC load
Connect a DC Load using either a serial port on your computer or the USB to serial device. If you
use the USB to serial device (IT-E132), you'll need to install the PL-2302 driver on the CD that came
with the IT-E132 device.

Make sure the DC load is powered on.

Register the COM server
Registering the COM server means telling Windows about the server. This only needs to be done
once and it will be remembered across power cycles. One condition, however, is that the
dcload.py file must not be moved or deleted; otherwise, the functionality will not be accessible
through COM.

The easiest way to register the COM server is to open an Explorer window, navigate to the directory
containing the python files in this software package, then double-click on the dcload.py file. A DOS
window will open momentarily, then disappear, probably too fast for you to see what happened.

If instead you wish to see what happens during registration, open a DOS window and go to the
directory that has the python file dcload.py that came with this software package.

Execute the command python dcload.py. You should see the message
Registered: BKServers.DCLoad85xx

This means the COM server has been registered with the operating system. Now an application can
request a connection to a COM server named BKServers.DCLoad85xx and the operating system
will start the dcload.py script when such a connection is requested.

If you wish to unregister the COM server, execute the command
python dcload.py --unregister.

You'd unregister, for example, if you wanted to move the dcload.py script somewhere else, then re-
register it.

Use python to access the COM server
In a DOS window, go to the directory that has the python file client.py that came with this software
package. Run the command python client.py com p br. Here, p is the COM (RS-232
communications) port the DC load is connected to and br is the baudrate. You should see output
similar to the following (of course, your numbers will differ):
Time from DC Load = Fri May 16 13:28:31 2008
Set to remote control
Set max current to 3 A

B&K DC Loads Python Library 15 January, 2009 Page 11 of 17

Set CC current to 0.2 A
Settings:
 Mode = cc
 Max voltage = 10.0
 Max current = 3.0
 Max power = 15.0
 CC current = 0.2
 CV voltage = 10.0
 CW power = 0.0
 CR resistance = 4000.0
 Load on timer time = 60000
 Load on timer state = disabled
 Trigger source = immediate
 Function = fixed
 Input values:
 6.392 V
 0.0 A
 0.0 W
 0x14
 0x0
 Product info:
 8512

 1.78

Use Visual Basic to access the COM server
If you have Microsoft Office installed on your computer, you can use the Visual Basic programming
environment for the following example. This works with Word, Excel, PowerPoint, etc. If you have
Visual Basic 6, the same code should run identically.

Open Word, then press Alt-F11 to get into the Visual Basic editor. Enter the following function:
Sub dcload()
 ' Use DC Load's python COM server from Visual Basic
 Set server = CreateObject("BKServers.DCLoad85xx")
 port = 3 'COM3
 baudrate = 38400 '38400bps
 response = server.Initialize(port, baudrate)
 ' Get the time and display it in a message box
 response = server.TimeNow()
 msg = "Time from DC Load COM server = " + response
 MsgBox msg
 ' Get the DC load's front panel display
 response = server.GetInputValues()
 MsgBox "Front panel: " + response
End Sub

Note you may need to change the port and baudrate variables. Put the editor's cursor in the
dcload() function, then press the F5 button to run the function. You'll see two message boxes
similar to:

B&K DC Loads Python Library 15 January, 2009 Page 12 of 17

and

The first message box demonstrates that the Visual Basic code is talking to the python COM server
and the second message box demonstrates that the Visual Basic code talked to the DC load using
the COM server.

*Note: If you only see the first message box and Word freezes, it is most likely because the DC Load
is not set on “Remote” operation. Be sure to turn on “Remote” operation by sending the remote
command “0x20” and “0x01” for bytes 3 and 4. You can quickly do this by calling the
SetRemoteControl() method from the dcload.py library (i.e. response =
server.SetRemoteControl()). For more references on command codes, see pages 54-74 in the user
manual. Once set, restart Word and run script again.

Similar code should work from any Windows programming language that supports talking to COM
servers.

B&K DC Loads Python Library 15 January, 2009 Page 13 of 17

Troubleshooting
All my commands are failing

If you get the message Command cannot be carried out (i.e., the 0xB0 status byte), it's possible
that you haven't set the instrument to remote mode. Execute SetRemoteControl() before trying to
execute your commands.

Make sure you're using the correct COM port number on your computer. Suspect this if the LEDs on
the IT-E131 or IT-E132 interface boxes do not light up when you're sending commands.

Serial interface seems to be locked up
You've tried to send numerous different commands to the DC load, but none of them work -- your
script hangs and needs to be stopped with ctrl-C.

First, check the LEDs on the IT-E131 or IT-E132 interface box. If you see the RX LED light, you
know your command is reaching the instrument. In this case, make sure the DC load's internal
address (under the :CONFIG menu) is set to 0.

If you see no blinking LED, suspect the interface box or the computer/driver.

DC load's front panel seems locked up
If you are using the short function or battery test function, there is no indication on the display that
this is so. Press Shift + Short or Shift + Battery to see if the front panel starts responding
again.

B&K DC Loads Python Library 15 January, 2009 Page 14 of 17

Python References
If you're an experienced programmer, you can learn python by reading the tutorial that comes with
python (it's in the Doc directory of your python installation). You will likely be writing useful python
programs in an hour or two.

There are numerous introductory python books available. For a beginning programmer, Lutz's
Learning Python might be appropriate.

Other references are:

Martelli, Python in a Nutshell, published by O'Reilly.

Lutz, Programming Python, published by O'Reilly.

Beazley, Python Essential Reference, published by New Riders.

B&K DC Loads Python Library 15 January, 2009 Page 15 of 17

Appendices
Introduction:

For convenience, included in the “python.zip” file that can be downloaded from
www.bkprecision.com are Python 2.5.2, pyserial 2.4, and pywin32 2.12. These are the 3 executable
files required to use the python library and the COM server. If user decides to install using the
provided files, please skip Step 1 in Appendix 1, Appendix 2, and Appendix 3. If user rather
download the executable files themselves to obtain the latest versions, please follow all the steps as
indicated in all three appendices in the following.

Appendix 1: Getting and Installing Python
Step 1:
Go to http://www.python.org and get the current production version of python. The installer is a
Windows executable -- all you need to do is run it. You can accept the default choices if you wish.

Step 2:
Once python is installed, you need to add the python installation directory to your Path environment
variable. On Windows XP, this is done by going to My Computer and right clicking to choose
Properties. Click on the Advanced tab and then click the Environmental Variables button. The
method for other versions of Windows can be different.

Step 3:
Open a DOS window (one way is to click on the Start button, select Run, then type in cmd.exe).
Type python and press the Enter key. You should see something like the following:
Python 2.5.1 (r251:54863, Apr 18 2007, 08:51:08) [MSC v.1310 32 bit (Intel)] on
win32
Type "help", "copyright", "credits" or "license" for more information.
>>>

If you see this, python is installed correctly. This is known as the python interactive interpreter.
Press ctrl-z and return to exit the python interpreter.

Appendix 2: Getting and Installing pyserial
Step 1:
Go to http://pyserial.sourceforge.net and download the pyserial package.

Step 2:
Unpack it in a convenient directory, then open a DOS window and cd to that directory. Type the
command
python setup.py install

Step 3:
This will install pyserial. You can verify the installation by starting python, then typing import
serial as follows:
Python 2.5.1 (r251:54863, Apr 18 2007, 08:51:08) [MSC v.1310 32 bit (Intel)] on
win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import serial
>>>

B&K DC Loads Python Library 15 January, 2009 Page 16 of 17

http://www.python.org/
http://www.bkprecision.com/
http://pyserial.sourceforge.net/

If you see no error message after the import serial line, your pyserial installation was
successful. Press ctrl-z and return to exit the python interpreter.

Appendix 3: Getting and Installing pywin32
Step 1:
Go to http://wiki.python.org/moin/Win32All and follow the links to the SourceForge repository.

Step 2:
Select the executable with the python version that matches the version of python you installed. Run
the executable to install pywin32.

Step 3:
You can verify the installation by starting python, then typing import win32com as follows:
Python 2.5.1 (r251:54863, Apr 18 2007, 08:51:08) [MSC v.1310 32 bit (Intel)] on
win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import win32com
>>>

If you see no error message after the import win32com line, your pywin32 installation was
successful. Press ctrl-z and return to exit the python interpreter.

B&K DC Loads Python Library 15 January, 2009 Page 17 of 17

http://wiki.python.org/moin/Win32All

	Introduction
	Prerequisites

	Why a Library is Useful
	Using the Library from Python
	Conventions
	Return values
	Example
	TimeNow()
	TurnLoadOn()
	TurnLoadOff()
	Remote or local control
	SetRemoteControl()
	SetLocalControl()

	Maximums
	SetMaxCurrent(current)
	GetMaxCurrent(sp)
	SetMaxVoltage(voltage)
	GetMaxVoltage()
	SetMaxPower(power)
	GetMaxPower()

	Modes
	SetMode(mode)
	GetMode()

	Set mode parameters
	SetCCCurrent(current_in_A)
	GetCCCurrent()
	SetCVVoltage(voltage_in_V)
	GetCVVoltage()
	SetCWPower(power_in_W)
	GetCWPower()
	SetCRResistance(resistance_in_ohms)
	GetCRResistance()

	Transient operations
	SetTransient(mode, A, A_time_s, B, B_time_s, operation="continuous")
	GetTransient(mode)

	Battery testing
	SetBatteryTestVoltage(min_voltage_in_V)
	GetBatteryTestVoltage()

	Load On Timer
	SetLoadOnTimer(time_in_s)
	GetLoadOnTimer()
	SetLoadOnTimerState(enabled=0)
	GetLoadOnTimerState()

	SetCommunicationAddress(address=0)
	Local control
	EnableLocalControl()
	DisableLocalControl()

	Remote Sense
	SetRemoteSense(enabled=0)
	GetRemoteSense()

	Trigger
	SetTriggerSource(source="immediate")
	GetTriggerSource()
	TriggerLoad()

	Save/recall Settings
	SaveSettings(register=0)
	RecallSettings(register=0)

	Functions
	SetFunction(function="fixed")
	GetFunction()

	GetInputValues()
	GetProductInformation()

	Using the COM Server
	Connect the DC load
	Register the COM server
	Use python to access the COM server
	Use Visual Basic to access the COM server

	Troubleshooting
	All my commands are failing
	Serial interface seems to be locked up
	DC load's front panel seems locked up

	Python References
	Appendices
	Introduction:
	Appendix 1: Getting and Installing Python
	Appendix 2: Getting and Installing pyserial
	Appendix 3: Getting and Installing pywin32

